穿越楚楚世界楚楚集团

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

搜索
热搜: 活动 交友 discuz
查看: 147|回复: 0

万物皆可拓扑?有着奇妙拓扑态的材料其实无处不在

[复制链接]

1万

土地

0

官位

0

英雄

平民

Rank: 2Rank: 2

积分
101
发表于 2019-9-1 12:22:25 | 显示全部楼层 |阅读模式
楚楚师徒0

欢迎您穿越!Q号微信号直接登陆

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
万物皆可拓扑?有着奇妙拓扑态的材料其实无处不在

扭开一个角度的两层石墨烯似乎展现出了一种被称为“脆弱拓扑”的现象。泉源:Juliette Halsey for Nature

在已往的几年里,物理学家发现了一种大概在险些所有固态晶体里都会出现的“脆弱”拓扑结构(详见5月发布的一份预印本, 见参考文献1)。另一项于6月[2]发表在《自然》杂志上的研究则描述了一个碳基设备中电子大概出现的脆弱结构。一旦得到证实,这就会是脆弱拓扑的第一个实验证据。

现在说这些发现是否能影响到实用材料还为时过早,但研究者们已经发现这套理论大概可以或许表明某些范例的超导。他们说这一现象大概在光子学上也很重要,纵然用光脉冲而非电子传输信息的技能。对于使用超等盘算机模拟材料行为的研究者来说,大概也会受脆弱拓扑理论的影响。

最新研究表明脆弱拓扑“并不但是一个激进的学术无底洞”。哈佛大学研究凝结态的理论物理学家Ashvin Vishwanath说:“这个领域虽然刚诞生,我就已经很难跟上它的脚步了。”

圈圈多少

拓扑是数学的一个分支,研究物体的一连形变,也就是说不能切开或是割裂物体,因此不能把连在一起的两个环剪成两部分。在某些材料中,电子可以处于一种“扭结式”的量子态,而这种量子态可以,比如说吧,让一个电子不绝地向某个方向移动,因为改变路径就意味着它会突然改变状态,而这等价于把扭结剪断。

因此,物理性质就是“由拓扑包管的”了。最著名的例子是1980年在某些二维导电材料中发现的量子霍尔效应,其电阻并不会受温度等变量的小幅厘革影响。这一效应极为稳健,甚至在5月国际单元制改革的时候被拿来作为电阻单元“欧姆”的界说。在三维系统里的类似效应则允许一类被称为拓扑绝缘体的材料——名不副实地——在外边沿成为抱负导体,而材料内部则是绝缘体。

人们认为拥有这些稳健性质的“强拓扑”材料作为热电材料,即将热能转化为电能的材料,前景十分可观。一些物理学家期望这类材料能成为未来拓扑量子盘算机的底子,这类盘算机在办理某些问题时,速度较经典盘算机有指数级的提升。

强拓扑性质泉源于电子量子态的怪异特性:它并不是像岩盐这种普通绝缘体一样是完全围绕在单个原子周围。拓扑材料中有一些电子“离域”了,它们共有一种影响材料整体的量子态。

但是根据理论学家的盘算,有些材料有离域电子,却不具有强拓扑性质。换句话说,在大量的离域量子态之中,强拓扑材料只是其中的一类。除此之外,另有一类电子态可以无视小扰动,但并不像强拓扑态那么稳健。稍微改变一下,比方稍微改变一点晶体中的杂质,就可以酿成普通的材料。在2018年的一篇文章[3]里,Vishwanath的团队将这种现象称为“脆弱拓扑”。

扭扭发现

最开始,物理学家不确定脆弱拓扑是否真的很重要。但是在2018年3月的一个意外发现中,一切都改变了。物理学家[5,6]发现把两层石墨烯——单原子厚的碳片——叠放起来之后,如果把交角扭成某几个“魔数”,就会产生超导性,即可以以零电阻导电。Vishwanath等人很快盘算出,这种扭过的石墨烯中所包罗的某些电子态展现出了脆弱拓扑。那真是“太棒了”, Vishwanath说,“我们原本以为这没用。然后发现这有大用。”

至今仍然不清楚脆弱拓扑态对于扭曲的石墨烯产生超导是否真的有意义。人们已经知道强拓扑态会表现出可丈量的现象;而脆弱拓扑的效应大概更微妙。

不外,一些物理学家认为,脆弱拓扑肯定会影响材料的某些行为,因为它比强拓扑更为常见。研究已经表明约莫四分之一的材料有强拓扑性。但是在5月发布于arXiv的一篇预印本中[1],物理学家发现险些所有材料都存在脆弱拓扑态的电子。他们系统性地从已知晶体的数据库中寻找脆弱拓扑,并找到了几十万个脆弱拓扑现象的例子。这篇文章的第一作者、普林斯顿大学的理论物理学家Andrei Bernevig表现,如果思量到脆弱拓扑的话,“看起来险些所有材料都存在某种拓扑态”。

现在,脆弱拓扑的第一手实验证据已经开始出现了。6月《自然》杂志发表的一篇论文[2]在非扭曲的双层石墨烯中发现了脆弱拓扑的证据。加州大学圣芭芭拉分校的Joshua Island所带领的研究团队实验制造一种基于石墨烯的强拓扑绝缘体,作为未来拓扑量子盘算机的储存器。他们将石墨烯夹在了两层另一种二维材料二硒化钨之间,并施加了电场,结果记载到了电场厘革时设备边沿电子的移动,而这正是拓扑绝缘体应当表现出的现象。“我们看到这一新的物态时,就赶快研究到底是怎么回事。”Island说。

但是其他的丈量数据表明,这不大概是传统的拓扑绝缘体。因此,Island向另一位理论物理学家同事求助,后者意识到这是脆弱拓扑态的第一个实验证据[7]。

改改算法

脆弱拓扑大概会影响到材料物理特性的数值模拟。为了让超等盘算机盘算材料变得更为简朴,研究者们通常会简化假设,而当脆弱拓扑态存在的时候,这些假设大概不再有效,石溪大学从事脆弱拓扑研究的理论凝结态物理学家Jennifer Cano说[4]。

和固态材料相比,传导光的设备大概更容易在实验中观察到脆弱拓扑。其现象大概也会更为显著。麻省理工学院的物理学家Thomas Christensen说,根据他的开端盘算,光子学中提出的很多“拓扑”设备大概正是脆弱拓扑的实例。

伊利诺伊大学厄巴纳-香槟分校的理论物理学家Barry Bradlyn表现,虽然我们还不知道脆弱拓扑是否会产生大量应用,但是至少对理论物理学家来说这很有趣。早期一篇关于脆弱拓扑的论文[4]便是他与人合写的。他说脆弱拓扑“违反了”关于材料中电子状态的“传统假设”。


来源网络
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

浏览奖励

1

查看全部奖励

提示:您本次回帖将获得额外奖励0银元宝(用户组奖励0,勋章奖励0,主题帖数奖励0,发帖数奖励0。)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

本站1998-02-28至今已运行9600天。欢迎光临!

QQ|大事记|Archiver|手机版|小黑屋|扬州楚楚网络科技有限公司版权所有 ( 苏ICP备17038799号-2|32100102010032

GMT+8, 2024-6-11 12:26 , Processed in 1.351261 second(s), 64 queries .

Powered by Discuz! X3.4 Licensed

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表